moranIndex
Description
Moran's I measures patterns of attribute values associated with features. The method reveal whether similar values tend to occur near each other, or whether high or low values are interspersed.
Moran's I > 0 means a clusterd pattern. Moran's I < 0 means a dispersed pattern. Moran's I = 0 means a random pattern.
In order to test the significance of the result. The z score is calculated. A positive enough z-score (ex. >1.96) indicates clustering, while a negative enough z-score (ex. <-1.96) indicates a dispersed pattern.
the z-score can be calculated based on a normal or random assumption.
Bibliography*
- Moran's I
- pysal
- Andy Mitchell, The ESRI Guide to GIS Analysis Volume 2: Spatial Measurements & Statistics.
Parameters
Name | Type | Description |
---|---|---|
fc | FeatureCollection<any> | |
options | Object | |
options.inputField | string | the property name, must contain numeric values |
options.threshold? | number | the distance threshold (default 100000) |
options.p? | number | the Minkowski p-norm distance parameter (default 2) |
options.binary? | boolean | whether transfrom the distance to binary (default false) |
options.alpha? | number | the distance decay parameter (default -1) |
options.standardization? | boolean | wheter row standardization the distance (default true) |
Returns
Examples
const bbox = [-65, 40, -63, 42];
const dataset = turf.randomPoint(100, { bbox: bbox });
const result = turf.moranIndex(dataset, {
inputField: "CRIME",
});
Installation
$ npm install @turf/moran-index
import { moranIndex } from "@turf/moran-index";
const result = moranIndex(...);
$ npm install @turf/turf
import * as turf from "@turf/turf";
const result = turf.moranIndex(...);